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Abstract
The link between the short-wave model of the Camassa–Holm equation (SCHE)
and bilinear equations of the two-dimensional Toda lattice equation is clarified.
The parametric form of the N-cuspon solution of the SCHE in Casorati
determinant is then given. Based on the above finding, integrable semi-discrete
and full-discrete analogues of the SCHE are constructed. The determinant
solutions of both semi-discrete and fully discrete analogues of the SCHE are
also presented.

PACS numbers: 02.30.Ik, 05.45.Yv, 42.65.Tg, 42.81.Dp

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper, we consider integrable discretizations of the nonlinear partial differential equation

wT XX − 2κ2wX + 2wXwXX + wwXXX = 0, (1)

which belongs to the Harry–Dym hierarchy [1–3]. Here κ is a real parameter and, as shown
subsequently, can be normalized by the scaling transformation when κ �= 0. A connection
between equation (1) and the sinh-Gordon equation was established in [4]. When κ = 0,
equation (1) is called the Hunter–Saxton equation and is derived as a model for weakly
nonlinear orientation waves in massive nematic liquid crystals [5]. The Lax pair and bi-
Hamiltonian structure were discussed by Hunter and Zheng [6]. The dissipative and dispersive
weak solutions were discussed in details by the same authors [7, 8].

Equation (1) can be viewed as the short-wave model of the Camassa–Holm equation [9]

wT + 2κ2wX − wT XX + 3wwX = 2wXwXX + wwXXX. (2)

Following the procedure in [10–12], we introduce the time and space variables T̃ and X̃,

T̃ = εT , X̃ = ε−1X,
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where ε is a small parameter. Then w is expanded as w = ε2(w0 + εw1 + · · ·) with wi

(i = 0, 1, . . .) being functions of T̃ and X̃. At the lowest order in ε, we obtain

w0,T̃ X̃X̃ − 2κ2w0,X̃ + 2w0,X̃w0,X̃X̃ + w0w0,X̃X̃X̃ = 0, (3)

which is exactly equation (1) after writing back into the original variables. Based on this fact,
Matsuno obtained the N-cuspon solution of equation (1) by taking the short-wave limit on the
N-soliton solution of the Camassa–Holm equation [13, 14].

Note that the parameter κ of equation (1) can be normalized to 1 under the transformation

x = κX, t = κT ,

which leads to

wtxx − 2wx + 2wxwxx + wwxxx = 0. (4)

We call equation (4) the short-wave model of the Camassa–Holm equation (SCHE). Without
loss of generality, we will focus on equation (4) and its integrable discretizations, since
the solution of equation (1) with arbitrary nonzero κ , its integrable discretizations and the
corresponding solutions can be recovered through the above transformation.

The remainder of the present paper is organized as follows. In section 2, we reveal a
connection between the SCHE and bilinear form of the two-dimensional Toda-lattice (2DTL)
equation. The parametric form of the N-cuspon solution expressed by the Casorti determinant
is given, which is consistent with the solution given in [13]. Based on this fact, we propose
an integrable semi-discrete analogue of the SCHE in section 3 and further its integrable
full-discrete analogue in section 4. The concluding remark is given in section 5.

2. The connection with 2DTL equations and N-cuspon solution in determinant form

2.1. The link of the SCHE with the two-reduction of 2DTL equations

In this section, we will show that the SCHE can be derived from the bilinear form of the
2DTL equation

−
(

1

2
D−1D1 − 1

)
τn · τn = τn+1τn−1, (5)

where Dx is the Hirota D-derivative defined as

Dn
xf · g =

(
∂

∂x
− ∂

∂y

)n

f (x)g(y)

∣∣∣∣
y=x

,

and D−1 and D1 represent the Hirota D-derivatives with respect to the variables x−1 and x1,
respectively.

It is shown that the N-soliton solution of the 2DTL equation (5) can be expressed as the
Casorati determinant [16, 17]

τn = ∣∣ψ(n+j−1)

i (x1, x−1)
∣∣
1�i,j�N

=

∣∣∣∣∣∣∣∣∣∣

ψ
(n)
1 ψ

(n+1)
1 · · · ψ

(n+N−1)
1

ψ
(n)
2 ψ

(n+1)
2 · · · ψ

(n+N−1)
2

...
...

. . .
...

ψ
(n)
N ψ

(n+1)
N · · · ψ

(n+N−1)
N

∣∣∣∣∣∣∣∣∣∣
, (6)

with ψ
(n)
i satisfying the following dispersion relations:

∂ψ
(n)
i

∂x−1
= ψ

(n−1)
i ,

∂ψ
(n)
i

∂x1
= ψ

(n+1)
i .
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A particular choice of ψ
(n)
i ,

ψ
(n)
i = ai,1p

n
i epi

−1x−1+pix1+η0i + ai,2q
n
i eqi

−1x−1+qix1+η′
0i , (7)

automatically satisfies the above dispersion relations.
Applying the two-reduction τn−1 = ( ∏N

i=1 p2
i

)−1
τn+1, i.e. enforcing pi = −qi ,

i = 1, . . . , N , we get

−
(

1

2
D−1D1 − 1

)
τn · τn = τ 2

n+1, (8)

where the gauge transformation τn → ( ∏N
i=1 pi

)n
τn is used. Letting τ0 = f , τ1 = g and

x−1 = s, x1 = y, the above bilinear equation (8) takes the following form:

−(
1
2DsDy − 1

)
f · f = g2, (9)

−(
1
2DsDy − 1

)
g · g = f 2. (10)

Introducing u = g/f , equations (9) and (10) can be converted into

−(ln f )ys + 1 = u2, (11)

−(ln g)ys + 1 = u−2. (12)

Subtracting equation (12) from equation (11), one obtains
ρ

2
(ln ρ)ys + 1 = ρ2, (13)

by letting ρ = u2.
Introducing the dependent variable transformation

w = −2(ln g)ss,

it follows
1

2
wy = − ρs

ρ2
,

or

(ln ρ)s = −ρ

2
wy, (14)

by differentiating equation (12) with respect to s.
In view of equation (14), equation (13) becomes

−ρ

2

(ρ

2
wy

)
y

+ 1 = ρ2. (15)

Introducing the hodograph transformation{
x = 2y − 2(ln g)s,

t = s,

and referring to equation (12), we have

∂x

∂y
= 2 − 2 (ln g)ys = 2

ρ
,

∂x

∂s
= −2(ln g)ss = w,

which implies ⎧⎨
⎩∂y = 2

ρ
∂x,

∂s = ∂t + w∂x.

3
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Thus, equations (14) and (15) can be cast into{
(∂t + w∂x) ln ρ = −wx,

−wxx + 1 = ρ2.
(16)

By eliminating ρ, we arrive at

(∂t + w∂x) ln (−wxx + 1) = −2wx,

or

(∂t + w∂x)wxx − 2wx (1 − wxx) = 0,

which is actually the SCHE (4).

2.2. The N-cuspon solution of the SCHE

Based on the link of the SCHE with the two-reduction of the 2DTL equation, the N-cuspon
solution of the SCHE (4) is given as follows:

w = −2(ln g)ss,{
x = 2y − 2(ln g)s,

t = s,

g = ∣∣ψ(j)

i (y, s)
∣∣
1�i,j�N

,

ψ
(j)

i = ai,1p
j

i epi
−1s+piy+η0i + ai,2(−pi)

j e−pi
−1s−piy+η′

0i .

(17)

Moreover, the N-cuspon solution of the SCHE (1) with nonzero κ is given as follows:

w(y, T ) = −2(ln g)ss, (18)⎧⎪⎨
⎪⎩

X = 2y

κ
− 2

κ
(ln g)s,

T = s

κ
,

(19)

where

g = ∣∣ψ(j)

i (y, s)
∣∣
1�i,j�N

with

ψ
(n)
i = ai,1p

n
i epiy+s/pi+ηi0 + ai,2(−pi)

n e−piy−s/pi+η′
i0 .

We remark here that to assure the regularity of the solution, the τ -function is required to be
positive definite. In what follows, we list the one-cuspon and two-cuspon solutions. For
N = 1, the τ -function is

g = 1 + e2p1(y+κT /p2
1+y0),

by choosing a1,1/a1,2 = −1, which yields the one-cuspon solution

w(y, T ) = − 2

p2
1

sech2
[
p1

(
y + κT

/
p2

1 + y0
)]

,

X = 2y

κ
− 2

κp1

{
1 + tanh

[
p1

(
y + κT

/
p2

1 + y0
)]}

.

The profiles of one-cuspon with κ = 1.0 and κ = 0.1 are plotted in figure 1.
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Figure 1. Plots for the one-cuspon solution for p1 = √
2 and different κ: (a) κ = 1.0; (b) κ = 0.1.

The τ -function corresponding to the two-cuspon solution is

g = 1 + eθ1 + eθ2 +

(
p1 − p2

p1 − p2

)2

eθ1+θ2 ,

with

θi = 2pi

(
y + κT

/
p2

i + yi0
)
, i = 1, 2.

Here a1,1/a1,2 = −1 and a2,1/a2,2 = 1 are chosen to assure the regularity of the solution.

3. Integrable semi-discretization of the SCHE

Based on the link of the SCHE with the two-reduction of the 2DTL equation clarified in the
previous section, we attempt to construct the integrable semi-discrete analogue of the SCHE.

Consider a Casorati determinant

τn(k) = ∣∣ψ(n+j−1)

i (k)
∣∣
1�i,j�N

=

∣∣∣∣∣∣∣∣∣∣

ψ
(n)
1 (k) ψ

(n+1)
1 (k) · · · ψ

(n+N−1)
1 (k)

ψ
(n)
2 (k) ψ

(n+1)
2 (k) · · · ψ

(n+N−1)
2 (k)

...
...

. . .
...

ψ
(n)
N (k) ψ

(n+1)
N (k) · · · ψ

(n+N−1)
N (k)

∣∣∣∣∣∣∣∣∣∣
,

with ψ
(n)
i satisfying the following dispersion relations:


kψ
(n)
i = ψ

(n+1)
i , (20)

∂sψ
(n)
i = ψ

(n−1)
i , (21)

where 
k is defined as 
kψ(k) = ψ(k)−ψ(k−1)

a
. In particular, we can choose ψ

(n)
i as

ψ
(n)
i (k) = pn

i (1 − api)
−k eξi + qn

i (1 − aqi)
−k eηi ,

ξi = 1

pi

s + ξi0, ηi = 1

qi

s + ηi0,

5
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which automatically satisfies the dispersion relations (20) and (21). The above Casorati
determinant satisfies the bilinear form of the semi-discrete 2DTL equation (the Bäcklund
transformation of the bilinear equation of the 2DTL equation) [17, 18](

1

a
Ds − 1

)
τn(k + 1) · τn(k) + τn+1(k + 1)τn−1(k) = 0. (22)

Applying a two-reduction condition pi = −qi , i = 1, . . . , N , which implies τn−1 � τn+1,
we obtain

−
(

1

a
Ds − 1

)
fk+1 · fk = gk+1gk, (23)

−
(

1

a
Ds − 1

)
gk+1 · gk = fk+1fk, (24)

by letting τ0(k) = fk and τ1(k) = gk .
Letting uk = gk/fk , equations (23) and (24) are equivalent to

−1

a

(
ln

fk+1

fk

)
s

+ 1 = uk+1uk, (25)

−1

a

(
ln

gk+1

gk

)
s

+ 1 = u−1
k+1u

−1
k . (26)

Subtracting equation (26) from equation (25), one obtains

uk+1uk

a

(
ln

uk+1

uk

)
s

+ 1 = u2
k+1u

2
k. (27)

Introducing the discrete analogue of hodograph transformation

xk = 2ka − 2(ln gk)s

and

δk = xk+1 − xk = 2a − 2

(
ln

gk+1

gk

)
s

.

It then follows from equation (26) that

δk = 2a

uk+1uk

,

or

ρk+1ρk = 4a2

δ2
k

, (28)

by assuming ρk = u2
k .

Introducing the dependent variable transformation

wk = −2(ln gk)ss,

equation (27) becomes

1

δk

(
ln

ρk+1

ρk

)
s

+ 1 − 4a2

δ2
k

= 0. (29)

Differentiating equation (26) with respect to s, we have

1

2a
(wk+1 − wk) = − 1

uk+1uk

(ln uk+1uk)s = − 1

2uk+1uk

(ln ρk+1ρk)s ,

6
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or

(ln ρk+1ρk)s = − 2

δk

(wk+1 − wk). (30)

Eliminating ρk and ρk+1 from equations (29) and (30), we obtain

1

δk

(wk+1 − wk) − 1

δk−1
(wk − wk−1) = 1

2
(δk + δk−1) − 2a2

(
1

δk

+
1

δk−1

)
, (31)

or


2wk = 1

δk

M

(
δk − 4a2

δk

)
, (32)

by defining a difference operator 
 and an average operator M as follows:


Fk = Fk+1 − Fk

δk

, MFk = Fk+1 + Fk

2
.

Furthermore, substitution of equation (28) into equation (30) leads to

dδk

ds
= wk+1 − wk. (33)

Equations (31) and (33) constitute the semi-discrete analogue of the SCHE.
Next, let us show that in the continuous limit a → 0 (δk → 0), the proposed semi-discrete

SCHE recovers the continuous SCHE. To this end, equations (31) and (33) are rewritten as⎧⎪⎨
⎪⎩

−2

δk + δk−1
(
wk − 
wk−1) + 1 = 4a2

δkδk−1
,

∂sδk = wk+1 − wk.

By taking logarithmic derivative of the first equation, we get

∂s

{ −2

δk + δk−1
(
wk − 
wk−1) + 1

}
−2

δk + δk−1
(
wk − 
wk−1) + 1

= −∂sδk

δk

− ∂sδk−1

δk−1
.

The dependent variable w is regarded as a function of x and t, where x is the space coordinate
of the k-th lattice point and t is the time, defined by

xk = x0 +
k−1∑
j=0

δj , t = s.

In the continuous limit a → 0 (δk → 0), we have

∂sδk

δk

= wk+1 − wk

δk

→ wx,
∂sδk−1

δk−1
= wk − wk−1

δk−1
→ wx,

2

δk + δk−1
(
wk − 
wk−1) → wxx,

∂xk

∂s
= ∂x0

∂s
+

k−1∑
j=0

∂δj

∂s
= ∂x0

∂s
+

k−1∑
j=0

(wj+1 − wj) → w,

∂s = ∂t +
∂x

∂s
∂x → ∂t + w∂x,

7
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where the origin of space coordinate x0 is taken so that ∂x0
∂s

cancels w0. Thus, the above
semi-discrete SCHE converges to

(∂t + w∂x)(−wxx + 1)

−wxx + 1
= −2wx,

or

(∂t + w∂x)wxx = 2wx (−wxx + 1) , (34)

which is nothing but the SCHE (4).
In summary, the semi-discrete analogue of the SCHE and its determinant solution are

given as follows.

The semi-discrete analogue of the SCHE:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

δk

(wk+1 − wk) − 1

δk−1
(wk − wk−1) = 1

2
(δk + δk−1) − 2a2

(
1

δk

+
1

δk−1

)
,

dδk

dt
= wk+1 − wk.

(35)

The determinant solution of the semi-discrete SCHE:

wk = −2(ln gk)ss,

δk = xk+1 − xk = 2a
fk+1fk

gk+1gk

,{
xk = 2ka − 2(ln gk)s,

t = s,

gk = ∣∣ψ(j)

i (k)
∣∣
1�i,j�N

, fk = ∣∣ψ(j−1)

i (k)
∣∣
1�i,j�N

,

ψ
(j)

i (k) = ai,1p
j

i (1 − api)
−k epi

−1s+η0i + ai,2(−pi)
j (1 + api)

−k e−pi
−1s+η′

0i .

(36)

Introducing new independent variables Xk = xk/κ and T = t/κ , we can include the
parameter κ in the semi-discrete SCHE (35)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

δk

(wk+1 − wk) − 1

δk−1
(wk − wk−1) = 1

2κ2
(δk + δk−1) − 2a2

(
1

δk

+
1

δk−1

)
,

dδk

dT
= wk+1 − wk,

(37)

where δk = Xk+1 − Xk and s = κT . This is the semi-discrete analogue of the SCHE (1).
The N-cuspon solution of the semi-discrete SCHE (37) with the parameter κ is given by

wk = −2(ln gk)ss,

δk = Xk+1 − Xk = 2a

κ

fk+1fk

gk+1gk

,

{
Xk = 2ka

κ
− 2

κ
(ln gk)s,

T = s
κ
,

gk =
∣∣∣ψ(j)

i (k)

∣∣∣
1�i,j�N

, fk =
∣∣∣ψ(j−1)

i (k)

∣∣∣
1�i,j�N

,

ψ
(j)

i (k) = ai,1p
j

i (1 − api)
−k epi

−1s+η0i + ai,2(−pi)
j (1 + api)

−k e−pi
−1s+η′

0i . (38)

8
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4. Full discretization of the SCHE

In much the same way of finding the semi-discrete analogue of the SCHE, we seek for its
full-discrete analogue and in the process we arrive at its N-cuspon solution.

Consider the following Casorati determinant:

τn(k, l) = ∣∣ψ(n+j−1)

i (k, l)
∣∣
1�i,j�N

, (39)

where

ψ
(n)
i (k, l) = ai,1p

n
i (1 − api)

−k
(
1 − bpi

−1
)−l

eξi + ai,2q
n
i (1 − aqi)

−k(1 − bqi
−1)−l eηi ,

with

ξi = pi
−1s + ξi0, ηi = qi

−1s + ηi0.

It is known that the above determinant satisfies bilinear equations [18](
1

a
Ds − 1

)
τn(k + 1, l) · τn(k, l) + τn+1(k + 1, l)τn−1(k, l) = 0 (40)

and

(bDs − 1)τn(k, l + 1) · τn+1(k, l) + τn(k, l)τn+1(k, l + 1) = 0. (41)

Here a, b are mesh sizes for space and time variables, respectively.
Applying the two-reduction τn−1 = ( ∏N

i=1 p2
i

)−1
τn+1, i.e. enforcing pi = −qi ,

i = 1, . . . , N , and letting τ0(k, l) = fk,l , τ1(k, l) = gk,l , the above bilinear equations take the
following form:(

1

a
Ds − 1

)
fk+1,l · fk,l + gk+1,lgk,l = 0, (42)

(
1

a
Ds − 1

)
gk+1,l · gk,l + fk+1,lfk,l = 0, (43)

(bDs − 1)fk,l+1 · gk,l + fk,lgk,l+1 = 0, (44)

(bDs − 1)gk,l+1 · fk,l + gk,lfk,l+1 = 0, (45)

where the gauge transformation τn → (∏N
i=1 pi

)n
τn is used. It is readily shown that the above

equations are equivalent to

1

a

(
ln

fk+1,l

fk,l

)
s

= 1 − gk+1,lgk,l

fk+1,lfk,l

, (46)

1

a

(
ln

gk+1,l

gk,l

)
s

= 1 − fk+1,lfk,l

gk+1,lgk,l

, (47)

b

(
ln

fk,l+1

gk,l

)
s

= 1 − fk,lgk,l+1

fk,l+1gk,l

, (48)

b

(
ln

gk,l+1

fk,l

)
s

= 1 − gk,lfk,l+1

gk,l+1fk,l

. (49)

We introduce a dependent variable transformation

wk,l = −2(ln gk,l)ss (50)

9
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and a discrete hodograph transformation

xk,l = 2ka − 2(ln gk,l)s ; (51)

then the mesh

δk,l = xk+1,l − xk,l = 2a − 2

(
ln

gk+1,l

gk,l

)
s

(52)

is naturally defined. It then follows(
ln

gk+1,l

gk−1,l

)
s

= 2a − 1

2
(δk,l + δk−1,l). (53)

In view of equation (47), one obtains
fk+1,lfk,l

gk+1,lgk,l

= δk,l

2a
. (54)

A substitution into equation (46) yields(
ln

fk+1,l

fk,l

)
s

= a − 2a2

δk,l

; (55)

it then follows (
ln

fk+1,l

fk−1,l

)
s

= 2a − 2a2

(
1

δk,l

+
1

δk−1,l

)
. (56)

Starting from an alternative form of equation (47)

2a − 2

(
ln

gk+1,l

gk,l

)
s

= 2a
fk+1,lfk,l

gk+1,lgk,l

, (57)

we obtain

wk+1,l − wk,l

δk,l

=
−2

(
ln gk+1,l

gk,l

)
ss

2a − 2
(

ln gk+1,l

gk,l

)
s

=
(

ln
fk+1,lfk,l

gk+1,lgk,l

)
s

(58)

by taking logarithmic derivative with respect to s. A shift from k to k − 1 gives

wk,l − wk−1,l

δk−1,l

=
(

ln
fk,lfk−1,l

gk,lgk−1,l

)
s

. (59)

Subtracting equation (59) from equation (58), we obtain

wk+1,l − wk,l

δk,l

− wk,l − wk−1,l

δk−1,l

=
(

ln
fk+1,l

fk−1,l

)
s

−
(

ln
gk+1,l

gk−1,l

)
s

. (60)

By using relations (53) and (56), we finally arrive at

wk+1,l − wk,l

δk,l

− wk,l − wk−1,l

δk−1,l

− 1

2
(δk,l + δk−1,l) + 2a2

(
1

δk,l

+
1

δk−1,l

)
= 0. (61)

Similar to equation (32), equation (61) constitutes the first equation of the full discretization
of the SCHE, which can be cast into a simpler form:


2wk,l = 1

δk,l

M

(
δk,l − 4a2

δk,l

)
. (62)

Next, we seek for the second equation of the full discretization. Recalling (46)–(49), one
could obtain

xk+1,l+1 − xk,l+1

xk+1,l − xk,l

=
2a − 2

(
ln gk+1,l+1

gk,l+1

)
s

2a − 2
(

ln gk+1,l

gk,l

)
s

=
(

ln gk+1,l+1

fk+1,l

)
s
− 1

b(
ln fk,l+1

gk,l

)
s
− 1

b

; (63)

here a shift from l to l + 1 in (47) and a shift from k to k + 1 in (49) are employed.

10
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From equations (50), (55) and (58), one can find the following two relations:(
ln

gk+1,l+1

fk+1,l

)
s

= −wk+1,l − wk,l − 2a2

2δk,l

+
1

4
(xk+1,l + xk,l − 2xk+1,l+1) (64)

and(
ln

fk,l+1

gk,l

)
s

= wk+1,l+1 − wk,l+1 + 2a2

2δk,l+1
− 1

4
(xk+1,l+1 + xk,l+1 − 2xk,l), (65)

after some tedious algebraic manipulations. Substituting these two relations into (63), we
finally obtain the second equation of the fully discrete analogue of the SCHE:

δk,l+1 − δk,l

b
+

1

4
δk,l+1(xk+1,l+1 + xk,l+1 − 2xk,l) +

1

4
δk,l(xk+1,l + xk,l − 2xk+1,l+1)

= 1

2
(wk+1,l+1 + wk+1,l − wk,l+1 − wk,l). (66)

Taking the continuous limit b → 0 in time, we have

δk,l+1 − δk,l

b
→ dδk

ds
,

δk,l+1(xk+1,l+1 + xk,l+1 − 2xk,l) → 0,

δk,l+1δk,l(xk+1,l + xk,l − 2xk+1,l+1) → 0

and
1

2
(wk+1,l+1 + wk+1,l − wk,l+1 − wk,l) → wk+1 − wk.

Therefore, one recovers exactly the second equation of the semi-discrete SCHE (33).
In summary, the fully discrete analogue of the SCHE and its determinant solution are

given as follows.

The fully discrete analogue of the SCHE:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wk+1,l − wk,l

δk,l

− wk,l − wk−1,l

δk−1,l

− 1

2
(δk,l + δk−1,l) + 2a2

(
1

δk,l

+
1

δk−1,l

)
= 0,

δk,l+1 − δk,l

b
+

1

4
δk,l+1(xk+1,l+1 + xk,l+1 − 2xk,l)

+
1

4
δk,l(xk+1,l + xk,l − 2xk+1,l+1) = 1

2
(wk+1,l+1 + wk+1,l − wk,l+1 − wk,l).

(67)

The determinant solution of the fully discrete SCHE:

wk,l = −2(ln gk,l)ss = −2
h̄k,lgk,l − h2

k,l

g2
k,l

,

xk,l = 2ka − 2(ln gk,l)s = 2ka − 2
hk,l

gk,l

,

δk,l = xk+1,l − xk,l = 2a
fk+1,lfk,l

gk+1,lgk,l

,

gk,l = ∣∣ψ(j)

i (k, l)
∣∣
1�i,j�N

, fk,l = ∣∣ψ(j−1)

i (k, l)
∣∣
1�i,j�N

,

11
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hk,l = ∂gk,l

∂s
=

∣∣∣∣∣∣∣∣∣∣∣

ψ
(0)
1 (k, l) ψ

(2)
1 (k, l) ψ

(3)
1 (k, l) · · · ψ

(N)
1 (k, l)

ψ
(0)
2 (k, l) ψ

(2)
2 (k, l) ψ

(3)
2 (k, l) · · · ψ

(N)
2 (k, l)

...
...

...
. . .

...

ψ
(0)
N (k, l) ψ

(2)
N (k, l) ψ

(3)
N (k, l) · · · ψ

(N)
N (k, l)

∣∣∣∣∣∣∣∣∣∣∣
,

h̄k,l = ∂2gk,l

∂s2
=

∣∣∣∣∣∣∣∣∣∣∣

ψ
(−1)
1 (k, l) ψ

(2)
1 (k, l) ψ

(3)
1 (k, l) · · · ψ

(N)
1 (k, l)

ψ
(−1)
2 (k, l) ψ

(2)
2 (k, l) ψ

(3)
2 (k, l) · · · ψ

(N)
2 (k, l)

...
...

...
. . .

...

ψ
(−1)
N (k, l) ψ

(2)
N (k, l) ψ

(3)
N (k, l) · · · ψ

(N)
N (k, l)

∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣

ψ
(0)
1 (k, l) ψ

(1)
1 (k, l) ψ

(3)
1 (k, l) · · · ψ

(N)
1 (k, l)

ψ
(0)
2 (k, l) ψ

(1)
2 (k, l) ψ

(3)
2 (k, l) · · · ψ

(N)
2 (k, l)

...
...

...
. . .

...

ψ
(0)
N (k, l) ψ

(1)
N (k, l) ψ

(3)
N (k, l) · · · ψ

(N)
N (k, l)

∣∣∣∣∣∣∣∣∣∣∣
,

ψ
(j)

i (k, l) = ai,1p
j

i (1 − api)
−k(1 − bpi

−1)−l eξi + ai,2(−pi)
j (1 + api)

−k(1 + bpi
−1)−l eηi ,

ξi = pi
−1s + ξi0, ηi = −pi

−1s + ηi0. (68)

Note that s is an auxiliary parameter. By virtue of s, hk,l and h̄k,l can be expressed as
hk,l = ∂sgk,l and h̄k,l = ∂2

s gk,l , respectively, because the auxiliary parameter s works on
elements of the above determinant by ∂sψ

(n)
i (k, l) = ψ

(n−1)
i (k, l).

Introducing new independent variables Xk,l = xk,l/κ and b̃ = b/κ , we can include the
parameter κ in the full-discrete SCHE (67):⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

wk+1,l − wk,l

δk,l

− wk,l − wk−1,l

δk−1,l

− 1

2κ2
(δk,l + δk−1,l) + 2a2

(
1

δk,l

+
1

δk−1,l

)
= 0,

δk,l+1 − δk,l

b̃
+

1

4κ2
δk,l+1(Xk+1,l+1 + Xk,l+1 − 2Xk,l)

+
1

4κ2
δk,l(Xk+1,l + Xk,l − 2Xk+1,l+1) = 1

2
(wk+1,l+1 + wk+1,l − wk,l+1 − wk,l).

(69)

Similarly, the N-cuspon solution of the full-discrete SCHE (69) with the parameter κ is
given as follows:

wk,l = −2(ln gk,l)ss = −2
h̄k,lgk,l − h2

k,l

g2
k,l

,

Xk,l = 2ka

κ
− 2

κ
(ln gk,l)s = 2ka

κ
− 2

κ

hk,l

gk,l

,

δk,l = Xk+1,l − Xk,l = 2a

κ

fk+1,lfk,l

gk+1,lgk,l

,

gk,l = ∣∣ψ(j)

i (k, l)
∣∣
1�i,j�N

, fk,l = ∣∣ψ(j−1)

i (k, l)
∣∣
1�i,j�N

,

12
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hk,l = ∂gk,l

∂s
= 1

κ

∣∣∣∣∣∣∣∣∣∣∣

ψ
(0)
1 (k, l) ψ

(2)
1 (k, l) ψ

(3)
1 (k, l) · · · ψ

(N)
1 (k, l)

ψ
(0)
2 (k, l) ψ

(2)
2 (k, l) ψ

(3)
2 (k, l) · · · ψ

(N)
2 (k, l)

...
...

...
. . .

...

ψ
(0)
N (k, l) ψ

(2)
N (k, l) ψ

(3)
N (k, l) · · · ψ

(N)
N (k, l)

∣∣∣∣∣∣∣∣∣∣∣
,

h̄k,l = ∂2gk,l

∂s2
= 1

κ2

∣∣∣∣∣∣∣∣∣∣∣

ψ
(−1)
1 (k, l) ψ

(2)
1 (k, l) ψ

(3)
1 (k, l) · · · ψ

(N)
1 (k, l)

ψ
(−1)
2 (k, l) ψ

(2)
2 (k, l) ψ

(3)
2 (k, l) · · · ψ

(N)
2 (k, l)

...
...

...
. . .

...

ψ
(−1)
N (k, l) ψ

(2)
N (k, l) ψ

(3)
N (k, l) · · · ψ

(N)
N (k, l)

∣∣∣∣∣∣∣∣∣∣∣

+
1

κ2

∣∣∣∣∣∣∣∣∣∣∣

ψ
(0)
1 (k, l) ψ

(1)
1 (k, l) ψ

(3)
1 (k, l) · · · ψ

(N)
1 (k, l)

ψ
(0)
2 (k, l) ψ

(1)
2 (k, l) ψ

(3)
2 (k, l) · · · ψ

(N)
2 (k, l)

...
...

...
. . .

...

ψ
(0)
N (k, l) ψ

(1)
N (k, l) ψ

(3)
N (k, l) · · · ψ

(N)
N (k, l)

∣∣∣∣∣∣∣∣∣∣∣
,

ψ
(j)

i (k, l) = ai,1p
j

i (1 − api)
−k(1 − bpi

−1)−l eξi + ai,2(−pi)
j (1 + api)

−k(1 + bpi
−1)−l eηi ,

ξi = pi
−1s + ξi0, ηi = −pi

−1s + ηi0. (70)

5. Concluding remarks

In the present paper, bilinear equations and the determinant solution of the SCHE are obtained
from the two-reduction of the 2DTL equation. Based on this fact, integrable semi- and full-
discrete analogues of the SCHE are constructed. The N-soliton solutions of both continuous
and discrete SCHEs are formulated in the form of the Casorati determinant. Note that the
short-pulse equation was also obtained from the two-reduction of the 2DTL equation [19].

Finally, we remark that the present paper is one of a series of work in which we attempt to
obtain integrable discrete analogues for a class of integrable nonlienar PDEs whose solutions
possess singularities such as peakon, cuspon or loop-soliton solutions. New discrete integrable
systems obtained in this paper, along with the semi-discrete analogue for the Camassa–Holm
equation [15] and the semi-discrete and fully discrete analogues of the short-pulse equation
[19], deserve further study in the future.
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